Absolute Value as a Distance:

|x-3| means the distance from 3

$$|x-3|=2$$
Strat hand

Answer:
$$x = 1$$
 or $x = 5$

$$|x+2| = 1$$
 means $|x-(-2)| = 1$
one unit $|x-(-2)| = 1$
start here $|x-(-2)| = 1$
Answer: $|x-(-2)| = 1$

Draw the number line and solve the absolute value equation:

1.
$$|x-3|=4$$

2. |x-1|=2

Answer:

| A - 1 | - 2

Answer:____

3.
$$|x-6|=2$$

Answer:____

Answer:___

$$4. \quad |x+5| = 1$$

Answer:_____

5.
$$|x+3|=3$$

Answer:

6.
$$|x+2|=4$$

Solve Algebraically:

- 1. Get absolute value by itself
- 2. Set up 2 equations

*one without the absolute values

*the other without absolute values and change the sign of the right side.

3. Check in the original

Example 1:

$$\begin{vmatrix} x-3 \end{vmatrix} = 4$$

 $x-3 = 4$ or $x-3 = -4$
 $\frac{+3}{x} = 7$ $\frac{+3}{x} = -1$

Example 2:

$$\begin{vmatrix} x+2 \end{vmatrix} = 5$$

 $x+2=5$ or $x+2=-5$
 $\frac{-2}{x=3}$ $\frac{-2}{x=-7}$

$$\begin{vmatrix} x-3 & | & = 4 \\ |7-3 & | & = 4 \end{vmatrix}$$
 $\begin{vmatrix} x-3 & | & = 4 \\ |-1-3 & | & = 4 \end{vmatrix}$ Check:

$$\begin{vmatrix} x+2 | = 5 \\ |3+2 | = 5 \end{vmatrix}$$
 $\begin{vmatrix} x+2 | = 5 \\ |-7+2 | = 5 \end{vmatrix}$
 $|5| = 5\checkmark$ $|-5| = 5\checkmark$

Answer:
$$x = 7$$
 or $x = -1$

Answer:
$$x = 3$$
 or $x = -7$

Try:

1.
$$|x-1|=2$$

2.
$$|x+5|=1$$

3.
$$|3x-1|=2$$

4.
$$\left| -2x + 5 \right| = 1$$

Find the solution:

AND - WHERE THERE IS 2 LINES (INTERSECTION)

OR - AT LEAST ONE LINE (UNION)

1. AND

4. OR

Answer:__

Answer:

5

Answer:

Answer:

Answer:

Answer:

$$|x| >$$
means OR

|x| < # means AND

1. Get the Asbolute Value by itself

- 2. Make TWO inequalities with the correct word OR/AND

 *first inequality just take off the absolute value

 *correct word OR/AND

 *first inequality take off the absolute value, flip

 *symbol, and the absolute value of the absolute value flip

 *symbol, and the absolute value of the absolute value flip

 *symbol of the absolute value flip
 - *second inequality take off the absolute value, flip \Leftrightarrow symbol, and change signs on the right side

$$x > 1$$
 OR $x < -4$

OR means 1 or more lines

Be careful to watch the following:

x= NEGATIVENO SOLUTIONx< NEGATIVE</td>NO SOLUTIONx> NEGATIVEINFINITE SOLUTIONS